Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells

نویسندگان

  • Melissa M. Herbst-Kralovetz
  • Andrea L. Radtke
  • Margarita K. Lay
  • Brooke E. Hjelm
  • Alice N. Bolick
  • Shameema S. Sarker
  • Robert L. Atmar
  • David H. Kingsley
  • Charles J. Arntzen
  • Mary K. Estes
  • Cheryl A. Nickerson
چکیده

Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of recombinant norovirus like particle to histo-blood group antigen on cells in the lumen of pig duodenum.

Histo-blood group antigens (HBGA) expressed on cells in the human GI tract have been shown to function as receptors for noroviruses. In concordance with earlier reports (Backer et al., 1997; Yamamoto and Yamamoto, 2001), this study found that individual pigs are either HBGA type A positive or type H1 (type O) positive. Recombinant norovirus like particles from a genogroup I (rNVLP) or three gen...

متن کامل

Enteric bacteria promote human and mouse norovirus infection of B cells.

The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual's histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human nor...

متن کامل

Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: a possible mechanism of bioaccumulation.

Outbreaks of norovirus (NoV) gastroenteritis are often associated with the consumption of contaminated bivalves such as oysters, clams, and mussels. Crassostrea virginica oysters trap the Norwalk virus through the intestinal type A-like histo-blood group antigen (HBGA), a possible mechanism of bioaccumulation responsible for NoV outbreaks. In this study, we tested binding and inhibition of bind...

متن کامل

Norovirus Binding to Intestinal Epithelial Cells Is Independent of Histo-Blood Group Antigens

Human noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestin...

متن کامل

Challenges of Culturing Human Norovirus in Three-Dimensional Organoid Intestinal Cell Culture Models

Human noroviruses are the most common cause of acute gastroenteritis worldwide. Recently, cell culture systems have been described using either human embryonic intestinal epithelial cells (Int-407) or human epithelial colorectal adenocarcinoma cells (Caco-2) growing on collagen-I porous micro carrier beads in a rotating bioreactor under conditions of physiological fluid shear. Here, we describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013